x=1-(3x^2)/(x-4)

Simple and best practice solution for x=1-(3x^2)/(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x=1-(3x^2)/(x-4) equation:



x=1-(3x^2)/(x-4)
We move all terms to the left:
x-(1-(3x^2)/(x-4))=0
Domain of the equation: (x-4))!=0
x∈R
determiningTheFunctionDomain -(1-3x^2/(x-4))+x=0
We multiply all the terms by the denominator
-(1-3x^2+x*(x-4))=0
We calculate terms in parentheses: -(1-3x^2+x*(x-4)), so:
1-3x^2+x*(x-4)
determiningTheFunctionDomain -3x^2+x*(x-4)+1
We multiply parentheses
-3x^2+x^2-4x+1
We add all the numbers together, and all the variables
-2x^2-4x+1
Back to the equation:
-(-2x^2-4x+1)
We get rid of parentheses
2x^2+4x-1=0
a = 2; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·2·(-1)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{6}}{2*2}=\frac{-4-2\sqrt{6}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{6}}{2*2}=\frac{-4+2\sqrt{6}}{4} $

See similar equations:

| x-36+2x+15=180 | | 5y+2=3y+18 | | 5x-7=x^2 | | 5x+2=3x+2= | | 3/4x^2+2x-1/2=0 | | (12x+45)+(6x-3)=90 | | (12x+45)+(6x-3)+x=180 | | (12x+45)+(6x-3)=18 | | 5x-60x^2=0 | | 0.5(x^2+1)=x | | 120×p=400 | | S(x)=-20+2.5x | | (3x+44)+(4x-3)=180 | | (3x+44)+(4x-3)+x=180 | | 7x×4x=-6 | | x^2+5x+5.76=0 | | 5^x-2*5^(x-2)=23 | | 2x+2=6x+10 | | 5(p+1)-3(4-p)=9 | | X/65=x+5/70 | | (2x+15)+(2x-20)+x=180 | | 25(5x)=65 | | 9s=7+1 | | 21x^2-59x-40=0 | | Z+24=11z | | 81b^2-25b=0 | | -6×+12y=6 | | Z2+24=11z | | 3×+5x-7x=0 | | Z2-24=11z | | 7p-15=3p+1 | | 3×^+5x-7x=0 |

Equations solver categories